Cho phương trình x^2 – (m – 1)x – m = 0, trong đó m là tham số, x là ẩn số. Tìm m để phương trình có hai nghiệm phân biệt đều nhỏ hơn 1.

Cho phương trình x2 – (m – 1)x – m = 0, trong đó m là tham số, x là ẩn số. Tìm m để phương trình có hai nghiệm phân biệt đều nhỏ hơn 1.

Trả lời

Lời giải

Xét phương trình x2 – (m – 1)x – m = 0

D = [(m – 1)]2 – 4.1.(m) = m2 – 2m + 1 + 4m = m2 + 2m + 1 = (m + 1)2.

Để phương trình có hai nghiệm phân biệt thì D > 0

Û (m + 1)2 > 0

Û m + 1 0

Û m 1     (1)

Theo định lí Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 1\\{x_1}{x_2} = - m\end{array} \right.\)

Để phương trình có hai nghiệm đều nhỏ hơn 1 thì \[\left\{ \begin{array}{l}{x_1} < 1\\{x_2} < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} - 1 < 0\\{x_2} - 1 < 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} - 2 < 0\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 - 2 < 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 > 0\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}m < 3\\ - m - \left( {m - 1} \right) + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\ - 2m > - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\m < 1\end{array} \right. \Leftrightarrow m < 1\)   (2)

Từ (1) và (2) ta có: m < 1; m 1.

Vậy m < 1 và m 1.

Câu hỏi cùng chủ đề

Xem tất cả