Cho phương trình x^2 – (m – 1)x – m = 0, trong đó m là tham số, x là ẩn số

Đề bài: Cho phương trình x2 – (m – 1)x – m = 0, trong đó m là tham số, x là ẩn số. Tìm m để phương trình có hai nghiệm phân biệt đều nhỏ hơn 1.

Trả lời

Hướng dẫn giải:

Xét phương trình x2 – (m – 1)x – m = 0

Có D = [–(m – 1)]2 – 4.1.(–m) = m2 – 2m + 1 + 4m = m2 + 2m + 1 = (m + 1)2.

Để phương trình có hai nghiệm phân biệt thì D > 0

Û (m + 1)2 > 0

Û m + 1 ≠ 0

Û m ≠ –1     (1)

Theo định lí Viet ta có: x1+x2=m1x1x2=m

Để phương trình có hai nghiệm đều nhỏ hơn 1 thì x1<1x2<1x11<0x21<0

x1+x22<0x11x21>0m12<0x1x2x1+x2+1>0

m<3mm1+1>0m<32m>2m<3m<1m<1   (2)

Từ (1) và (2) ta có: m < 1; m ≠ –1.

Vậy m < 1 và m  1.

Câu hỏi cùng chủ đề

Xem tất cả