Cho phương trình x2 − (2m + 5)x + 2m + 1 = 0 với m là tham số có hai nghiệm dương phân biệt x1, x2.

Cho phương trình x− (2m + 5)x + 2m + 1 = 0 với m là tham số có hai nghiệm dương phân biệt x1, x2. Tìm m thỏa mãn x1x2 có giá trị nhỏ nhất.

Trả lời

Để phương trình có 2 nghiệm dương phân biệt thì

Δ=2m+5242m+1>0x1+x2=2m+5>0x1x2=2m+1>0

4m2+12m+21>0m>52m>12m>12.

Đặt A=x1x2>0

A2=x1+x22x1x2

A2=2m+522m+1

A2=2m+122m+1+1+3

A2=2m+112+33

A3Amin=3 khi 2m+1=1m=0 .

Vậy GTNN của x1x2  bằng 3  khi m = 0.

Câu hỏi cùng chủ đề

Xem tất cả