Cho phương trình: x2 - 2(m + 1)x + 4m = 0. Tìm m để phương trình có
Cho phương trình: x2 – 2(m + 1)x + 4m = 0. Tìm m để phương trình có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12.
Cho phương trình: x2 – 2(m + 1)x + 4m = 0. Tìm m để phương trình có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12.
Ta có △’ = (m + 1)2 – 4m = m2 + 2m + 1 – 4m = m2 – 2m + 1 = (m – 1)2
△’ ≥ 0 nên phương trình có 2 nghiệm là
\({x_1} = m + 1 + \sqrt {{{(m - 1)}^2}} = m + 1 + \left| {m - 1} \right| = m + 1 + m - 1 = 2m\)
\({x_2} = m + 1 - \sqrt {{{(m - 1)}^2}} = m + 1 - \left| {m - 1} \right| = m + 1 - m + 1 = 2\)
Ta có: (x1 + m)(x2 + m) = 3m2 + 12
⇔ (2m + m)(2 + m) = 3m2 + 12
⇔ 4m + 2m2 + 2m + m2 = 3m2 + 12
⇔ 6m + 3m2 = 3m2 + 12
⇔ 6m = 12
⇔ m = 2
Vậy m = 2.