Cho phương trình: x^2 − 2(m − 1)x + 2m − 5 = 0

Đề bài: Cho phương trình: x2 − 2(m − 1)x + 2m − 5 = 0 (1)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biết với mọi m.

b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 < 2 < x2.

Trả lời

Hướng dẫn giải:

a) Ta thấy: Δ'=m122m5=m24m+6

=m22+22>0,m

Do đó phương trình luôn có hai nghiệm phân biệt với mọi m thực

b) Áp dụng định lý Vi-ét với x1, x2 là hai nghiệm của phương trình thì:

x1+x2=2m1x1x2=2m5

Khi đó, để x1 < 2 < x2 Û (x1 − 2)(x2 − 2) < 0

Û x1x2 − 2(x1 + x2) + 4 < 0

Û 2m − 5 − 4(m − 1) + 4 < 0

Û − 2m + 3 < 0 

m>32

Vậy m>32  là giá trị của m thỏa mãn.

Câu hỏi cùng chủ đề

Xem tất cả