Cho phương trình x² − (m − 2)x + m − 5 = 0 (1) trong đó m là tham số. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt

Cho phương trình x²(m2)x + m5 = 0 (1) trong đó m là tham số. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

Trả lời

(m2)x + m5 = 0 (1)

Ta có: Δ=m224m5=m28m+24  .

Để (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m khi

Δ0m28m+240

m42+80 (luôn đúng, với mọi m).

Vậy phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

Câu hỏi cùng chủ đề

Xem tất cả