Cho nửa đường trong (O) đường kính BC và điểm A nằm trong nửa đường tròn

Cho nửa đường trong (O) đường kính BC và điểm A nằm trong nửa đường tròn (A ≠ B, C). Kẻ AH BC (H BC). Trên nửa mặt phẳng bờ BC chứa A vẽ 2 nửa đường tròn, đường kính HB và HC. Chúng cắt AB và AC ở E và F.

a. Chứng minh: AE.AB = AF.AC.

b. Chứng minh: EF là tiếp tuyến của đường tròn đường kính BH.

c. Gọi I và K là 2 điểm của H qua AB và AC. Chứng minh I, A, K thẳng hàng.

Trả lời

a. Ta có: \(\widehat {BEH} = 90^\circ \)(góc nội tiếp chắn nửa (BH)) HE AB

∆AHB vông tại H, đường cao HE:

AE.AB = \(A{H^2}(1)\)

\(\widehat {HFC} = 90^\circ \)(góc nội tiếp chắn nửa (HC)) HF AC

∆AHC vuông tại H, đường cao HF: AF.AC = \(A{H^2}\)(2)

Từ (1) và (2) AE.AB = AF.AC

b. Ta có: \(\widehat {BAC} = 90^\circ \)(góc nội tiếp chắn nửa (BC)) \( \Rightarrow \widehat {EAF} = 90^\circ \)

\(\widehat {AEH} = 90^\circ \left( {HE \bot AB} \right)\)\[\widehat {AFH} = 90^\circ \left( {HF \bot AC} \right)\]

Tứ giác AEHF là hình chữ nhật Tứ giác AEHF nội tiếp

\(\widehat {HEF} = \widehat {HAF}\)(Cùng chắn cung HF của (AEHF))

\(\widehat {HAF} = \widehat {ABC} \Rightarrow \) EF là tiếp tuyến (BH)

c. Ta sẽ chứng minh \(\widehat {AIH} = \widehat {KAC}\)

Ta có: \(\widehat {KAC} = \widehat {HAC}\) (tính chất đối xứng)

\(\widehat {HAC} = \widehat {AHE}\) (so le trong) \( \Rightarrow \widehat {KAC} = \widehat {AHE}\)

\(\widehat {AIH} = \widehat {AHE}\) (tính chất đối xứng)

Vậy \(\widehat {AIH} = \widehat {KAC}\) (Cùng = \(\widehat {AHE}\))

Mà AC // IH (tứ giác AEHF là hình chữ nhật)

\( \Rightarrow \widehat {AIH}\)\(\widehat {KAC}\) đồng vị I, A, K thẳng hàng.

Câu hỏi cùng chủ đề

Xem tất cả