Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến

Đề bài: Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.

a ) CMR OBNC nội tiếp.

b ) CMR NO vuông góc với AD.

c ) CMR CA . CN = CO . CD

 

d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.

Trả lời

Hướng dẫn giải:

Câu a) Ta có:  cân tại O và AC = MC nên  OCAM  hay OCN^=900 .

Xét tứ giác OBNC ta có :

OCN^=900 ( cmt )

OBN^=900 ( Tiếp tuyến vuông góc với bán kính )

OCN^+OBN^=1800 hay OBNC là tứ giác nội tiếp (đpcm )

Câu b ) Xét tam giác AND ta có :

AB là đường cao xuất phát từ đỉnh A.

DC là đường cao xuất phát từ đỉnh D.

Mà hai đường cao này cắt nhau tại O cho nên O là trực tâm của 

NO cắt AD suy ra NO là đường cao của tam giác AND NOAD

Câu c ) Ta có

CAO^+ANB^=900CDN^+ANB^=900CAO^=CDN^

Xét tam giác CAO và tam giác CDN ta có :

ACO^=DCN^=900CAO^=CDB^cmt

ΔCAO~ΔCDNgg

CACD=COCNCA.CN=CO.CD ( đpcm )

Câu d ) Xét tam giác AMB và tam giác ABN ta có :

BAM^:chungAMB^=ABN^=900

ΔAMB~ΔABNggAMAB=ABANAM.AN=AB2=4R2

Áp dụng BĐT cô – si ta có:

2AM+AN22AM.AN=28R2=4R2

Vậy GTNN của 2AM + AN là 4R2 khi và chỉ khi M là trung điểm của AN

Câu hỏi cùng chủ đề

Xem tất cả