Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, góc BAC = 120^0. Mặt phẳng (AB’C’) tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho. A. V = 3a^

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (AB’C’) tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho.
A. \(V = \frac{{3{a^3}}}{8}\);
B. \(V = \frac{{9{a^3}}}{8}\);
C. \(V = \frac{{{a^3}}}{8}\);
D. \(V = \frac{{3{a^3}}}{4}\).

Trả lời

Lời giải

Đáp án đúng là: A

Media VietJack

Gọi H là trung điểm của B’C’.

Ta có tam giác A’B’C’ cân tại A (A’B’ = A’C’ = a).

Suy ra A’H vừa là đường trung tuyến, vừa là đường cao của tam giác A’B’C’.

Do đó A’H B’C’.

Mà B’C’ AA’ (do AA’ (A’B’C’)).

Suy ra B’C’ (AA’H) Þ B’C’ AH

Ta có: \(\left\{ \begin{array}{l}\left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'\\\left( {AA'H} \right) \cap \left( {AB'C'} \right) = AH\\\left( {AA'H} \right) \cap \left( {A'B'C'} \right) = A'H\\B'C' \bot AH,B'C' \bot A'H\end{array} \right.\)

Suy ra góc giữa hai mặt phẳng (AB’C’) và (A’B’C’) là góc giữa hai đường thẳng AH và A’H, tức là \(\widehat {AHA'} = 60^\circ \).

Ta có \({S_{\Delta A'B'C'}} = {S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin 120^\circ = \frac{1}{2}a.a.\sin 120^\circ = \frac{{{a^2}\sqrt 3 }}{4}\).

Lại có \(B'C' = BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos 120^\circ } \)

\( = \sqrt {{a^2} + {a^2} - 2a.a.\cos 120^\circ } = a\sqrt 3 \).

Suy ra \(A'H = \frac{{2{S_{\Delta A'B'C'}}}}{{B'C'}} = \frac{{2.\frac{{{a^2}\sqrt 3 }}{4}}}{{a\sqrt 3 }} = \frac{a}{2}\).

Ta có AA’ (A’B’C’). Suy ra AA’ A’H.

Khi đó \(AA' = A'H.\tan \widehat {AHA'} = \frac{a}{2}.\tan 60^\circ = \frac{{a\sqrt 3 }}{2}\).

Vậy thể tích của khối lăng trụ đã cho là:

\(V = AA'.{S_{\Delta ABC}} = \frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^3}}}{8}\).

Do đó ta chọn phương án A.

Câu hỏi cùng chủ đề

Xem tất cả