Cho hình vuông ABCD, qua điểm M thuộc đường chéo AC kẻ ME vuông góc

Đề bài: Cho hình vuông ABCD, qua điểm M thuộc đường chéo AC kẻ ME vuông góc với AD, MF vuông góc với CD. Chứng minh rằng:

a) BE vuông góc với AF.

b) BM vuông góc với EF.

c) Các đường thẳng BM, AF và CE đồng quy.

Trả lời

Hướng dẫn giải:

Tài liệu VietJack

a)

Gọi giao của BM với EF là I, FM và AB là K

Vì tam giác ADF bằng tam giác BAE (cạnh huyền–cạnh góc vuông)

Nên DAF^=ABE^

⇒ ABE^+BAF^=DAF^+BAF^

ABE^+BAF^=90°

Do đó, AF vuông góc với EB

b)

Vì ABCD là hình vuông nên AC là phân giác của BAD^

Xét tứ giác AKME có

AK // ME

MK //AE

AM là phân giác của KAE^

KAE^=90°

Do đó, AKME là hình vuông

⇒ MK = ME và KB = MF

Do đó, tam giác KMB bằng tam giác MEF

MFE^=KBM^

Mà KMB^=IMF^

MFE^+IMF^=KBM^+KMB^=90°

Do đó, BM vuông góc với EF

c)

Xét tam giác BEF có:

BM,AF là các đường cao

nên BM cắt AF tại trực tâm của tam giác

Do đó, M là trực tâm

Vậy BM,AF,CE đồng quy

Câu hỏi cùng chủ đề

Xem tất cả