Cho hình vuông ABCD, M là trung điểm cạnh AB, P là giao điểm CM và DA
Hướng dẫn giải:
a) Ta có: (2 góc đổi đỉnh)
Xét tứ giác APBC có AB và CP là 2 đường chéo nhau tại trung điểm mỗi đường nên APBC là hình bình hành.
Vì APBC là hình bình hành nên mà
BCDP là hình thang vuông (Điều phải chứng minh).
b) Nhận xét: và đặt
Khi đó:
Suy ra đpcm.
c) Vì M là trung điểm của AB nên
Vì N là trung điểm của BC nên mà
mà vuông tại C nên
vuông tại Q.
Xét vuông tại Q, có QA là đường trung tuyến ứng với cạnh huyền
mà (Điều phải chứng minh).