Cho hình vuông ABCD . Gọi M, N lần lượt là trung điểm BC, CD. Chứng

Cho hình vuông ABCD . Gọi M, N lần lượt là trung điểm BC, CD. Chứng minh AN DM.

Trả lời
Cho hình vuông ABCD . Gọi M, N lần lượt là trung điểm BC, CD. Chứng  (ảnh 1)

Vì ABCD là hình vuông nên AB = BC = CD = DA

Vì M, N lần lượt là trung điểm BC, CD mà DC = BC

Suy ra MC = ND

Xét ΔDMC và ΔAND có

DC = AD (chứng minh trên)

\(\widehat D = \widehat C\left( { = 90^\circ } \right)\)

MC = ND (chứng minh trên)

Suy ra ΔDMC = ΔAND (c.g.c)

Do đó \(\widehat {M{\rm{D}}C} = \widehat {NA{\rm{D}}}\) (hai góc tương ứng)

Ta có

\(\widehat {M{\rm{D}}C} + \widehat {A{\rm{DM}}} = \widehat {A{\rm{D}}C} = 90^\circ \)

\(\widehat {M{\rm{D}}C} = \widehat {NA{\rm{D}}}\)

Suy ra \(\widehat {NA{\rm{D}}} + \widehat {A{\rm{DM}}} = 90^\circ \)

Gọi I là giao điểm của AN và DM

Xét tam giác ADI có

\(\widehat {NA{\rm{D}}} + \widehat {A{\rm{DM}}} + \widehat {AID} = 180^\circ \)

Suy ra \(90^\circ + \widehat {AID} = 180^\circ \)

Hay \(\widehat {AID} = 90^\circ \)

Do đó AN DM

Vậy AN DM .

Câu hỏi cùng chủ đề

Xem tất cả