Cho hình phẳng ( H ) giới hạn bởi các đường ( C1 ): f( x ) = x - pi, ( C2 ): g( x ) = sin x và x = 0. Gọi V là thể tích khối tròn xoay tạo thành do ( H ) quay quanh trục hoành và V = p pi ^2,
Hướng dẫn giải
Xét phương trình hoành độ giao điểm của đồ thị các hàm số \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) là
\(x - \pi = \sin x \Leftrightarrow x - \pi - \sin x = 0\) \(\left( 1 \right)\).
Xét hàm số \(h\left( x \right) = x - \pi - \sin x \Rightarrow h'\left( x \right) = 1 - \cos x \ge 0\), \(\forall x \in \mathbb{R}\).
Suy ra \(h\left( x \right)\) đồng biến trên \(\mathbb{R}\) và \(x = \pi \) là một nghiệm của phương trình \(\left( 1 \right)\) nên \(x = \pi \) là nghiệm duy nhất của phương trình \(\left( 1 \right)\).
Do đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục hoành là thể tích của khối nón khỉ quay tam giác vuông OAB quanh trục hoành.
\(V = \frac{1}{3}.\pi .O{B^2}.OA = \frac{1}{3}.\pi .{\pi ^2}.\pi = \frac{1}{3}{\pi ^4} \Rightarrow p = \frac{1}{3}\)
Vậy \(24p = 24.\frac{1}{3} = 8\).
Chọn A.