Cho hình phẳng ( H ) giới hạn bởi đồ thị hàm số y = căn bậc hai của 2x - 1/ 2x + 1, trục hoành, hai đường thẳng x = 1, x = 2. Thể tích cảu vật thể tròn xoay tạo thành khi cho hình ( H ) quay
Thể tích của vật thể tròn xoay tạo thành khi hình phẳng \(\left( H \right)\) quay xung quanh trục Ox là
\(V = \pi \int\limits_1^2 {{{\left( {\frac{{\sqrt {2x - 1} }}{{2x + 1}}} \right)}^2}dx} = \pi \int\limits_1^2 {\frac{{2x - 1}}{{{{\left( {2x + 1} \right)}^2}}}dx} = \pi \int\limits_1^2 {\left[ {\frac{1}{{2x + 1}} - \frac{2}{{{{\left( {2x + 1} \right)}^2}}}} \right]dx} \)
\( = \pi \left( {\frac{1}{2}\ln \left( {2x + 1} \right) + \frac{1}{{2x + 1}}} \right)\left| \begin{array}{l}^2\\_1\end{array} \right. = \pi \left( {\frac{1}{2}\ln \frac{5}{3} - \frac{2}{{15}}} \right) = \pi \left( {\ln \frac{{\sqrt {15} }}{3} - \frac{2}{{15}}} \right)\)
Suy ra \(a = 15\), \(b = - \frac{2}{{15}}\)
Vậy \(a.b = - 2\).
Chọn D.