Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh
Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA2 + MC2 = MB2 + MD2.
Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA2 + MC2 = MB2 + MD2.
Gọi K là giao điểm của hai đường chéo AC và BD suy ra K là trung điểm của AC và BD.
Trong \(\Delta MAC\) có:
\(M{A^2} + M{C^2} = 2M{K^2} + \frac{1}{2}A{C^2}\) (1) (công thức trung tuyến).
Trong \(\Delta MBD\): \(M{B^2} + M{D^2} = 2M{K^2} + \frac{1}{2}B{D^2}\) (2) (công thức trung tuyến)
Mặt khác AC = BD (3) (đường chéo hình chữ nhật)
Từ (1) và (2), (3) suy ra MA2 + MC2 = MB2 + MD2 (đpcm).