Cho hình chóp tam giác S.ABC có SA vuông góc với mặt đáy, tam giác ABC cân tại A.

Cho hình chóp tam giác S.ABC có SA vuông góc với mặt đáy, tam giác ABC cân tại A. Trên cạnh AB lấy điểm D sao cho AB=3AD. Gọi H là hình chiếu của B trên CD, M là trung điểm đoạn thẳng CH. Tính theo a  thể tích khối chóp S.ABM biết SA=AM=aBM=23a.

A. 3a39

B. 3a312

C. a39

D. a318

Trả lời
Chọn C
Media VietJack
Trong mặt phẳng đáy ABC : Kẻ Ax // BCAxCD=K, gọi N là trung điểm của BC. Khi đó do ΔABC cân ở A nên ANBC và tứ giác ANBK là hình chữ nhật.
Suy ra CN=BN=AK;KBBC
Gọi I là trung điểm của BH, do M là trung điểm đoạn thẳng CH nên MI//BC và MI=12BC (đường trung bình của tam giác ΔBHC. Vậy MI // AK, MIBK và MI=AK hay tứ giác AMIK là hình bình hành và I là trực tâm của tam giác BMK.
Suy ra IKBM và AM//IK nên AMBM.
Vậy ΔAMB vuông tại M. Suy ra SΔABM=12AM.BM
Theo giả thiết ta có: VS.ABM=13SA.SΔABM=16SA.AM.BM ; với SA=AM=aBM=23a. Suy ra VS.ABM=13SA.SΔABM=16SA.AM.BM
.

Câu hỏi cùng chủ đề

Xem tất cả