Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau
193
09/12/2023
Luyện tập 2 trang 110 Toán 11 Tập 2: Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Trả lời
![Luyện tập 2 trang 110 Toán 11 Tập 2 | Cánh diều Giải Toán 11](https://vietjack.com/toan-11-cd/images/luyen-tap-2-trang-110-toan-11-tap-2.PNG)
Do S.ABC là hình chóp tam giác đều nên SA = SB = SC (các cạnh bên bằng nhau).
Gọi O là chân đường cao của hình chóp tam giác đều S.ABC.
Do SO ⊥ (ABC) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC.
Xét ∆SAO và ∆SBO có:
^SOA=^SOB=90°
SO là cạnh chung;
SA = SB (chứng minh trên)
Do đó ∆SAO = ∆SBO (cạnh huyền – cạnh góc vuông)
Suy ra (hai góc tương ứng)
Chứng minh tương tự, ta cũng có∆SAO = ∆SCO nên
Từ đó ta có:
Vậy các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác: