Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau

Luyện tập 2 trang 110 Toán 11 Tập 2: Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.

Trả lời

Luyện tập 2 trang 110 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Do S.ABC là hình chóp tam giác đều nên SA = SB = SC (các cạnh bên bằng nhau).

Gọi O là chân đường cao của hình chóp tam giác đều S.ABC.

Do SO ⊥ (ABC) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC.

Xét ∆SAO và ∆SBO có:

SOA^=SOB^=90°;

SO là cạnh chung;

SA = SB (chứng minh trên)

Do đó ∆SAO = ∆SBO (cạnh huyền – cạnh góc vuông)

Suy ra SAO^=SCO^ (hai góc tương ứng)

Chứng minh tương tự, ta cũng có∆SAO = ∆SCO nên SAO^=SCO^.

Từ đó ta có: SAO^=SBO^=SCO^.

Vậy các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả