Cho hình chóp S.ABCD, đáy là hình thang có đáy lớn là AB. Gọi M, N

Cho hình chóp S.ABCD, đáy là hình thang có đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB.

a) Chứng minh MN // CD.

b) Tìm giao điểm P của SC và (AND).

c) Gọi I là giao điểm của AN và DP. Chứng minh SI // AB // CD.

Trả lời
Cho hình chóp S.ABCD, đáy là hình thang có đáy lớn là AB. Gọi M, N  (ảnh 1)

a) Xét tam giác SAB có M là trung điểm của SA, N là trung điểm của SB

Suy ra MN là đường trung bình của tam giác

Do đó MN // AB (tính chất đường trung bình của tam giác)

Mà AB // CD (do ABCD là hình thang).

Suy ra MN // CD.

b) Trong mp(ABCD), gọi E là giao điểm của BC và AD.

Khi đó E AD (AND) nên mp(AND) chính là mp(ANE);

            E BC (SBC) nên mp(SBC) chính là mp(SBE).

Trong mp(SBE), gọi P là giao điểm của EN và SC.

Ta có: (ANE) ∩ (SBE) = NE;

           NE ∩ SC = P

Suy ra SC ∩ (ANE) = P.

Do đó P là giao điểm của SC và (AND).

c) Do AN ∩ DP = {I} nên ta có:

• I DP, DP (SCD) do đó I (SCD).

• I AN, AN (SAB) do đó I (SAB).

Ta có: S (SAB) và S (SCD) nên (SAB) ∩ (SCD) = S;

           I (SAB) và I (SCD) nên (SAB) ∩ (SCD) = I.

Do đó (SAB) ∩ (SCD) = SI.

Lại có AB // CD; AB (SAB) và CD (SCD)

Suy ra SI // AB // CD.

Câu hỏi cùng chủ đề

Xem tất cả