Cho hình bình hành ABCD, hai đường chéo AC cắt BD tại O, hai đường cao AM và DQ của ∆AOD cắt nhau tại E, 2 đường cao BN và CP của ∆BOC cắt nhau tại F. Chứng minh AMCP, MNPQ là hình bình hành.

Cho hình bình hành ABCD, hai đường chéo AC cắt BD tại O, hai đường cao AM và DQ của ∆AOD cắt nhau tại E, 2 đường cao BN và CP của ∆BOC cắt nhau tại F. Chứng minh AMCP, MNPQ là hình bình hành.

Trả lời

Lời giải:

Media VietJack

Vì O là giao hai đường chéo của hình bình hành ABCD nên O là trung điểm của AC và BD.

Xét ΔAMO vuông tại M và ΔCPO vuông tại P có

OA = OC (O là trung điểm AC); \(\widehat {AOM} = \widehat {COP}\) (đối đỉnh)

Do đó: ΔAMO = ΔCPO (cạnh huyền – góc nhọn)

OM = OP hay O là trung điểm của PM.

Xét ΔDQO vuông tại Q và ΔBNO vuông tại N có 

OD = OB (O là trung điểm của BD); \(\widehat {DOQ} = \widehat {BON}\) (đối đỉnh)

Do đó: ΔDQO = ΔBNO (cạnh huyền – góc nhọn)

OQ = ON hay O là trung điểm của QN

Xét tứ giác AMCP có:

O là trung điểm của AC; O là trung điểm của MP

Do đó: AMCP là hình bình hành.

Xét tứ giác MNPQ có

O là trung điểm của MP; O là trung điểm của NQ.

Do đó: MNPQ là hình bình hành.

Câu hỏi cùng chủ đề

Xem tất cả