Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao

Câu 7: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.

a, Chứng minh: Tứ giác AMCN là hình bình hành

b, Tứ giác AECF là hình gì?

c, Chứng minh: E, F đối xứng qua O

d, Chứng minh: EC = 2DE.

Trả lời

Tài liệu VietJack

Ta có ABCD là hình bình hành  AC ∩ BD tại trung điểm mỗi đường

Mà AC ∩ BD = 0  O là trung điểm AC, DB

Lại có M, N là trung điểm OD, OB

=> OM = 1/2 OD = 1/2 OB = ON

  O là trung điểm MN

Do O là trung điểm AC, MN

 AMCN là hình bình hành (đpcm).

b,

Ta có AMCN là hình bình hành.

 AM // CN

 AE // CF

Mà AB // CD  AF // CE

 AECF là hình bình hành.

c,

Ta có AECF là hình bình hành.

 AC ∩ EF tại trung điểm mỗi đường

Mà O là trung điểm AC

 O là trung điểm EF

 E, F đối xứng nhau qua O (đpcm).

d,

Gọi G là trung điểm CE

Vì O là trung điểm AC  OG là đường trung bình ∆ACE

 OG // AE

 ME // OG

Mà M là trung điểm DO  ME là đường trung bình ∆ODG

 E là trung điểm DG

 DE = EG = GC

 CE  = CG + GE = DE + DE = 2DE (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả