Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB’, CC’, DD’ lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B’, C’, D’ ∈ (d)). Chứng minh rằng BB’
30
22/05/2024
Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB’, CC’, DD’ lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B’, C’, D’ ∈ (d)). Chứng minh rằng BB’ + DD’ = CC’.
Trả lời
Lời giải
Gọi O là giao điểm của AC và BD. ABCD là hình bình hành nên O là trung điểm của AC và BD. Vẽ OO’⊥ d, O’ ∈ d.
Các đường thẳng BB’, CC’, DD’, OO’ song song với nhau (vì cùng vuông góc với đường thẳng d).
Vì B’D’DB là hình thang (vì BB’ // DD) có OB = OD, OO’ // BB’ nên OO’ là đường trung bình của hình thang B’D’DB.
Do đó \[OO' = \frac{1}{2}\left( {BB' + DD'} \right)\].
Mặt khác ∆ACC’ có OO’ // CC’ và OA = OC.
Nên OO’ là đường trung bình của tam giác ACC’, suy ra: \(OO' = \frac{1}{2}CC'\).
Từ (1) và (2) suy ra BB’ + DD’ = CC’.