Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N.        a) Chứng minh: AM = CN.     b) Chứng minh: tứ giác DMBN là hình bìn

Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N.                                                                               
a)
Chứng minh: AM = CN.    

b) Chứng minh: tứ giác DMBN là hình bình hành.

Trả lời

Lời giải

Media VietJack

a) Vì ABCD là hình bình hành nên AB // CD

Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{D}}C}\) (Hai góc so le trong) và AB = CD, AD = BC     (1)

Vì DM là tia phân giác của góc ADC \(\widehat {ADM} = \widehat {MDC} = \frac{1}{2}\widehat {CDA}\)

Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{DA}}}\)

Do đó tam giác ADM cân tại A

Suy ra AM = AD (tính chất)                           (2)

Vì BN là tia phân giác của góc ABC \(\widehat {ABN} = \widehat {NBC} = \frac{1}{2}\widehat {ABC}\)

ABCD là hình bình hành nên AB // CD nên \(\widehat {ABN} = \widehat {BNC}\) (Hai góc so le trong)

Suy ra \(\widehat {CBN} = \widehat {BNC}\)

Do đó tam giác BCN cân tại C

Suy ra CN = CB (tính chất)                  (3)

Từ (1), (2) và (3) suy ra AM = CN           

Vậy AM = CN           

b) Ta có:

AB = AM + MB

CD = CN + ND

Mà AB = CD, AM = CN (chứng minh câu a)

Suy ra MB = ND

Tứ giác DMBN có:

MB = ND (chứng minh trên)

MB // ND (vì AB // CD)

Suy ra DMBN là hình bình hành

Vậy DMBN là hình bình hành.

Câu hỏi cùng chủ đề

Xem tất cả