Cho hàm số y=2x^3+mx^2-12x-13  với m là tham số thực.

Cho hàm số  y=2x3+mx212x13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị cách đều trục tung.

A. m=2

B. m=-1

C. m=1

D. m=0

Trả lời

Ta có  y'=6x2+2mx12.

Do  Δ'=m2+72>0, m nên hàm số luôn có hai điểm cực trị x1, x2 với  x1, x2 là hai nghiệm của phương trình  y'=0. Theo định lí Viet, ta có  x1+x2=m3.  

Gọi  Ax1;y1 và  Bx2;y2 là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán  x1=x2x1=x2 (do  x1x2)

 x1+x2=0m3=0m=0. Chọn D.

Câu hỏi cùng chủ đề

Xem tất cả