Cho hàm số: y = x^3 − 3mx^2 + 9x + 1, có đồ thị (Cm), với m là tham số. Tìm giá trị của tham số m để đường thẳng (dm): y = x + 10 − 3m cắt đồ thị (Cm) tại 3 điểm phân biệt A, B, C. Gọi k1, k2
Lời giải
y = x3 − 3mx2 + 9x + 1 Þ y' = 3x2 − 6mx + 9.
Phương trình hoành độ giao điểm của đồ thị (Cm) và đường thẳng (dm) là:
x3 − 3mx2 + 9x + 1 = x + 10 − 3m
Û x3 − 3mx2 + 8x + 3m − 9 = 0
Û (x3 + 8x − 9) − (3mx2 − 3m) = 0
Û (x − 1)(x2 + x + 9) − 3m(x − 1)(x + 1) = 0
Û (x − 1)[x2 + (1 − 3m)x + 9 − 3m] = 0
\[ \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} + \left( {1 - 3m} \right)x + 9 - 3m = 0\;\left( * \right)\end{array} \right.\]
Cho A là điểm có hoành độ x1 = 1.
Suy ra hệ số góc tiếp tuyến của (Cm) tại A là k1 = 3.12 − 6m.1 + 9 = 12 − 6m
Để (Cm) cắt đường thẳng (dm) tại 3 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt và khác 1.
\( \Rightarrow \left\{ \begin{array}{l}\Delta = {\left( {1 - 3m} \right)^2} - 4\left( {9 - 3m} \right) > 0\\{1^2} + \left( {1 - 3m} \right).1 + 9 - 3m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9{m^2} + 6m - 35 > 0\\11 - 6m \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > \frac{5}{3}\\m < - \frac{7}{3}\end{array} \right.\\m \ne \frac{{11}}{6}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > \frac{5}{3}\\m \ne \frac{{11}}{6}\end{array} \right.\\m < - \frac{7}{3}\end{array} \right.\)
Hoành độ của B và C là hai nghiệm của phương trình (*) với theo Vi-ét:
\(\left\{ \begin{array}{l}{x_2} + {x_3} = 3m - 1\\{x_2}{x_3} = 9 - 3m\end{array} \right.\).
Hệ số góc tiếp tuyến của (Cm) tại B, C lần lượt là:
k2 = 3x22 − 6mx2 + 9 và k3 = 3x32 − 6mx3 + 9
Để k1 + k2 + k3 > 15
Û (12 − 6m) + (3x22 − 6mx2 + 9) + (3x32 − 6mx3 + 9) > 15
Û 3(x22 + x32) − 6m(x2 + x3) + 30 − 6m > 15
Û 3[(x2 + x3)2 − 2x2x3] − 6m(x2 + x3) + 30 − 6m > 15
Û 3[(3m − 1)2 − 2(9 − 3m)] − 6m(3m − 1) + 30 − 6m > 15
Û 3(9m2 − 6m + 1 − 18 + 6m) − 18m2 + 6m + 30 − 6m > 15
Û 9m2 > 36 Û m2 > 4
\( \Rightarrow \left[ \begin{array}{l}m > 2\\m < - 2\end{array} \right.\).
Kết hợp các điều kiện của m suy ra \(m \in \left( { - \infty ;\; - \frac{7}{3}} \right) \cup \left( {2;\; + \infty } \right)\).