Cho hàm số y = x^3 – 3mx^2 + 4m^3 (m là tham số) có đồ thị C

Đề bài: Cho hàm số y = x3 – 3mx2 + 4m3 (m là tham số) có đồ thị C. Xác định m để C có các điểm cực đại và cực tiểu đối xứng với nhau qua đường thẳng y = x.

Trả lời

Hướng dẫn giải:

Ta có: y’ = 3x2 – 6mx = 0

x=0x=2m

Để hàm số có cực đại và cực tiểu thì m phải khác 0.

Giả sử hàm số có 2 cực trị là:

A(0; 4m3), B(2m; 0) AB=2m;4m3

Trung điểm của đoạn AB là: I(m; 2m3)

Điều kiện để AB đối xứng nhau qua đường thẳng y = x là AB vuông góc với đường thẳng y = x và I thuộc đường thẳng y = x

2m4m3=02m3=mm=0m2=12m=0m=±22

 

Kết hợp với điều kiện, ta có: m=±22 .

Vậy với m=±22  thì thỏa mãn yêu cầu bài toán.

 

Câu hỏi cùng chủ đề

Xem tất cả