Cho hàm số: y = m/3 x^3 - (m - 1)x^2 + 3(m - 2)x + 1 để hàm số đạt cực đại

Cho hàm số: \(y = \frac{m}{3}{x^3} - (m - 1){x^2} + 3(m - 2)x + 1\)để hàm số đạt cực đại x1, x2 thỏa mãn x1 + 2x2 = 1 thì giá trị của m bằng?

Trả lời

Ta có: y' = mx2 – 2(m – 1)x + 3(m – 2) (m ≠ 0)

Để hàm số có cực đại tại x1 và cực tiểu tại x2 thì phương tình

y' = mx2 – 2(m – 1)x + 3(m – 2) = 0 có 2 nghiệm phân biệt.

\( \Rightarrow \Delta '\) = (m – 1)2 – 3m(m – 2) = −2m2 + 4m + 1 > 0

\( \Rightarrow 1 - \frac{{\sqrt 6 }}{2} < m < 1 + \frac{{\sqrt 6 }}{2}\) (1)

Khi đó áp dụng định lý Vi−ét, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{2(m - 1)}}{m}\,\,(2)\\{x_1}{x_2} = \frac{{3(m - 2)}}{m}\,\,(3)\end{array} \right.\)

Mặt khác theo bài cho ta có: x1 + 2x2 = 1 (4)

Nếu 2x1 + x2 = 0 (5)

Từ (4) và (5) \( \Rightarrow {x_1} = - \frac{1}{3};{x_2} = \frac{2}{3}\).

Thay vào (2) ta có: \(2\frac{{m - 1}}{m} = \frac{1}{3} \Rightarrow m = \frac{6}{5}\)

Thay vào (3) ta có: \(3\frac{{m - 2}}{m} = - \frac{2}{9} \Rightarrow m = \frac{{54}}{9}\)

Suy ra 2x1 + x2 ≠ 0

Khi đó nhân hai vế của (4) với 2x1 + x2 ta có:

(x1 + 2x2)(2x1 + x2) = 2x1 + x2

\( \Leftrightarrow \) 2(x1 + x2)2 + x1x2 = 2x1 + x2

Thay (2) và (3) vào ta được:

\(8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} = 2{x_1} + {x_2}\)

\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 2{x_1} + {x_2} + {x_1} + 2{x_2}\)

\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 3({x_1} + {x_2})\)

\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 6\frac{{m - 1}}{m}\)

\( \Leftrightarrow 8{(m - 1)^2} + 3m(m - 2) + {m^2} = 6m(m - 1)\)

\( \Leftrightarrow 3{m^2} - 8m + 4 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = 2\end{array} \right.\) (TMĐK)

Vậy có hai giá trị m thỏa mãn yêu cầu bài toán là: \(m = \frac{2}{3}\); m = 2.

Câu hỏi cùng chủ đề

Xem tất cả