Cho hàm số y = f(x) có bảng biến thiên như sau Có bao nhiêu giá trị nguyên của m để phương trình 2^ f(x) + 4/ f(x) + log 2 [f^2(x) - 4f(x) + 5] = m có 6 nghiệm thực phân biệt?
46
16/06/2024
Cho hàm số y = f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của m để phương trình
có 6 nghiệm thực phân biệt?
A. 3
B. 5
C. 4
D. 6
Trả lời
Chọn B
Đặt ; .
Suy ra: . Ta thấy nên ở đây ta chỉ xét hàm trên .
;
.
Ta có: .
Suy ra: phương trình đã cho có 6 nghiệm thực phân biệt khi đồ thị hàm số y = g(x) và đường thẳng y = m có đúng 6 điểm chung phân biệt.
Vậy phương trình đã cho có 6 nghiệm thực phân biệt khi .
Suy ra có 5 giá trị nguyên của m thỏa mãn.