Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau: Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số g(x) = f(x^3/9) - m(x^2 + 9)^2/18 nghịch biến trên khoảng (0;5)

Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau:

Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau:  Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số g(x) = f(x^3/9) - m(x^2 + 9)^2/18   nghịch biến trên khoảng (0;5)? (ảnh 1)
Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số gx=fx39mx2+9218 nghịch biến trên khoảng (0;5)?

A. 2005

B. 2006

C. 2004

D. 2007

Trả lời

Chọn B

Đặt t=x39t'=x230x0;5t0;539. Ta có t=x39x=9t3x2=333t23.

Khi đó ta cần tìm m để hàm số ht=ftm33t23+322 nghịch biến trên 0;539.

Ta có h't=f't2333.m33t23+3t13=f't2333.m33t13+3t13.

Để ht nghịch biến trên 0;539h't=f't2333.m33t13+3t130t0;539

mf'tutt0;539 với ut=233333t13+3t13

Ta có u't=293333t233t43. Ta có u't=033t233t43=0t=3.

Bảng biến thiên:

Cho hàm số y = f(x) có bảng biến thiên của f'(x) như sau:  Có bao nhiêu giá trị nguyên của m trên đoạn [-2022;2023] để hàm số g(x) = f(x^3/9) - m(x^2 + 9)^2/18   nghịch biến trên khoảng (0;5)? (ảnh 2)

Từ bảng biến thiên ta thấy được utu3t0;539, mà f'tf'3t0;539

Khi đó mf'tutt0;539mf'3u3=18.

Câu hỏi cùng chủ đề

Xem tất cả