Cho hàm số y = ax + a + 1 với a là tham số, a khác 0 và a khác -1. Tìm tất cả các giá trị

Cho hàm số y = ax + a + 1 với a là tham số, a ≠ 0 và a ≠ –1. Tìm tất cả các giá trị của tham số a để khoảng cách từ gốc tọa độ O đến đồ thị đạt giá trị lớn nhất.

Trả lời

Hàm số y = ax + a + 1 có đồ thị là đường thẳng.

Với a ≠ 0 và a ≠ –1 thì đồ thị đó không đi qua gốc tọa độ O.

Gọi A là giao điểm của đồ thị với Ox nên ta có: \(A\left( {\frac{{ - a - 1}}{a};0} \right)\)

Do đó, \(OA = \left| {\frac{{a + 1}}{a}} \right|\)

Gọi B là giao điểm của d với Oy B(0; a + 1) OB = |a + 1|

Từ O kẻ vuông góc với AB được OH

Ta có:

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\)

\( \Rightarrow \frac{1}{{O{H^2}}} = \frac{{O{B^2} + O{A^2}}}{{O{A^2}.O{B^2}}} = \frac{{{{\left( {a + 1} \right)}^2} + {{\left( {\frac{{a + 1}}{a}} \right)}^2}}}{{{{\left( {a + 1} \right)}^2}.{{\left( {\frac{{a + 1}}{a}} \right)}^2}}}\)\( = \frac{{\frac{{{a^2}{{\left( {a + 1} \right)}^2} + {{\left( {a + 1} \right)}^2}}}{{{a^2}}}}}{{\frac{{{{\left( {a + 1} \right)}^4}}}{{{a^2}}}}}\)

\( = \frac{{\left( {{a^2} + 1} \right){{\left( {a + 1} \right)}^2}}}{{{{\left( {a + 1} \right)}^4}}} = \frac{{{a^2} + 1}}{{{{\left( {a + 1} \right)}^2}}} = \frac{{{a^2} + 1}}{{{a^2} + 2a + 1}}\)

\( \Rightarrow O{H^2} = \frac{{{a^2} + 2a + 1}}{{{a^2} + 1}} = 1 + \frac{{2a}}{{{a^2} + 1}} = 1 + \frac{2}{{a + \frac{1}{a}}}\).

Với a < 0 thì OH2 ≤ 1

Với a > 0 thì:

Ta có: \(a + \frac{1}{a} \ge 2\,\,\,\forall a > 0\)

\( \Rightarrow \frac{2}{{a + \frac{1}{a}}} \le 1\,\,\forall a > 0 \Rightarrow O{H^2} = 1 + \frac{2}{{a + \frac{1}{a}}} \le 2\,\,\forall a > 0\)

Do đó, giá trị lớn nhất của OHmax OH2max \(a = \frac{1}{a} \Leftrightarrow {a^2} = 1 \Leftrightarrow a = 1\) (vì a > 0).

Câu hỏi cùng chủ đề

Xem tất cả