Cho hàm số bậc nhất y = (m + 3)x + n (d). Tìm các giá trị của m, n để đường thẳng (d): a) Đi qua điểm A(1; –3) và B(–2; 3). b) Cắt đường thẳng 3y – x – 4 = 0. c) Song song với đường thẳng

Cho hàm số bậc nhất y = (m + 3)x + n (d).

Tìm các giá trị của m, n để đường thẳng (d):

a) Đi qua điểm A(1; –3) và B(–2; 3).

b) Cắt đường thẳng 3y – x – 4 = 0.

c) Song song với đường thẳng 2x + 5y = –1.

d) Trùng với đường thẳng y – 3x – 7 = 0.

Trả lời

Lời giải

a) Ta có (d) đi qua hai điểm A(1; –3) và B(–2; 3).

\( \Rightarrow \left\{ \begin{array}{l} - 3 = \left( {m + 3} \right).1 + n\\3 = \left( {m + 3} \right).\left( { - 2} \right) + n\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m + n = - 6\\ - 2m + n = 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}n = - m - 6\\ - 2m - m - 6 = 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}n = - m - 6\\ - 3m = 15\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}n = - m - 6\\m = - 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}n = - 1\\m = - 5\end{array} \right.\)

Vậy m = –5, n = –1 thỏa mãn yêu cầu bài toán.

b) Gọi d1: 3y – x – 4 = 0 \(y = \frac{1}{3}x + \frac{4}{3}\).

Để (d) cắt d1 nên ta có \(m + 3 \ne \frac{1}{3}\). Suy ra \(m \ne - \frac{8}{3}\).

Vậy \(m \ne - \frac{8}{3}\), n ℝ thỏa mãn yêu cầu bài toán.

c) Gọi d2: 2x + 5y = –1 \( \Leftrightarrow y = \frac{{ - 2}}{5}x - \frac{1}{5}\).

Vì (d) // d2 nên \(\left\{ \begin{array}{l}m + 3 = - \frac{2}{5}\\n \ne - \frac{1}{5}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m = - \frac{{17}}{5}\\n \ne - \frac{1}{5}\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}m = - \frac{{17}}{5}\\n \ne - \frac{1}{5}\end{array} \right.\) thỏa mãn yêu cầu bài toán.

d) Gọi d3: y – 3x – 7 = 0 y = 3x + 7.

Vì (d) trùng với d3 nên \(\left\{ \begin{array}{l}m + 3 = 3\\n = 7\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 7\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}m = 0\\n = 7\end{array} \right.\) thỏa mãn yêu cầu bài toán.

Câu hỏi cùng chủ đề

Xem tất cả