Cho hai tập khác rỗng: A = (m – 1; 4]; B = (–2; 2m + 2), với m ∈ ℝ. Xác định m để A ∩ B

Câu 50: Cho hai tập khác rỗng: A = (m – 1; 4]; B = (–2; 2m + 2), với m ∈ ℝ. Xác định m để A ∩ B = ∅.

Trả lời

Vì tập A khác rỗng nên ta có m – 1 < 4 hay m < 5 (1)

Vì tập B khác rỗng nên ta có –2 < 2m + 2.

 –4 < 2m.

 m > –2 (2)

Từ (1) và (2), ta suy ra tập hợp A và B đều khác rỗng khi và chỉ khi –2 < m < 5 (*).

Để A ∩ B ≠ ∅ thì m – 1 < 2m + 2.

 Nghĩa là, m > –3   (**).

Giao (*) và (**) lại với nhau, ta thu được kết quả –2 < m < 5.

Câu hỏi cùng chủ đề

Xem tất cả