Cho hai biểu thức A = 2 căn bậc hai của x - 1/ căn bậc hai của x - 1 và B = căn bậc hai của x / căn bậc hai của x - 1 + 3 /căn bậc hai của x + 1 - 6 căn bậc hai của x - 4/x - 1, với x ≥
25
19/05/2024
Cho hai biểu thức
\(A = \frac{{2\sqrt x - 1}}{{\sqrt x - 1}}\) và \(B = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} - \frac{{6\sqrt x - 4}}{{x - 1}}\), với x ≥ 0; x ≠ 1.
a) Tính A khi x = 25
b) Rút gọn biểu thức B
c) Đặt P = A.B. Tìm giá trị nguyên của x để P < 1
Trả lời
Lời giải
a) \[x = 25 \Rightarrow A = \frac{{2\sqrt {25} - 1}}{{\sqrt {25} - 1}} = \frac{{2.5 - 1}}{{5 - 1}} = \frac{9}{4}\].
b) \(B = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} - \frac{{6\sqrt x - 4}}{{x - 1}}\)
\( = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{3\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \frac{{6\sqrt x - 4}}{{x - 1}}\)
\( = \frac{{x + \sqrt x }}{{x - 1}} + \frac{{3\sqrt x - 3}}{{x - 1}} - \frac{{6\sqrt x - 4}}{{x - 1}}\)
\( = \frac{{x + \sqrt x + 3\sqrt x - 3 - 6\sqrt x + 4}}{{x - 1}} = \frac{{x - 2\sqrt x + 1}}{{x - 1}}\)
\( = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}\).
c) \(P = A.B = \frac{{2\sqrt x - 1}}{{\sqrt x - 1}} \cdot \frac{{\sqrt x - 1}}{{\sqrt x + 1}} = \frac{{2\sqrt x - 1}}{{\sqrt x + 1}}\), với x ≥ 0; x ≠ 1.
Để \(P < 1 \Rightarrow \frac{{2\sqrt x - 1}}{{\sqrt x + 1}} < 1\)
Do \(\sqrt x + 1 > 0\)
\( \Rightarrow 2\sqrt x - 1 < \sqrt x + 1\)
\( \Leftrightarrow \sqrt x < 2\)
Þ 0 < x < 4.
Kết hợp ĐKXĐ Þ x Î (0; 4) \ {1}.