Cho f(x) = −x^2 − 2(m − 1)x + 2m − 1. Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc
Câu 1: Cho f(x) = −x2 − 2(m − 1)x + 2m − 1.
Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc (0; 1)
Câu 1: Cho f(x) = −x2 − 2(m − 1)x + 2m − 1.
Tìm m để bất phương trình f(x) > 0 đúng với mọi x thuộc (0; 1)
f(x) = −x^2 − 2(m − 1)x + 2m − 1
Xét ∆’ = (m − 1)2− (−1)(2m − 1) = m2 ≥ 0, ∀x ∈ℝ
• TH1: ∆’= 0 ⇒ m = 0
Khi đó f(x) = −x2 + 2x − 1 = −(x − 1)2 ≤ 0, ∀x ∈ℝ
Vậy với m = 0 không thỏa mãn yêu cầu bài toán
• TH2: ∆’ > 0 ⇒ m ≠ 0
Khi đó f(x) = 0 cho hai nghiệm a, b
Ta có BBT của f(x) = 0 như sau:
Để f(x) > 0 đúng với mọi x thuộc (0; 1) thì: