Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm ). Qua C thuộc tia Ax, vẽ đường thẳng

Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm ). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.

a) Chứng minh : tứ giác AOHC nội tiếp.

b) Chứng minh : AC . AE = AD . CE

c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh : AM // BN

Trả lời
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm ). Qua C thuộc tia Ax, vẽ đường thẳng (ảnh 1)

a) Ta có

Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm ). Qua C thuộc tia Ax, vẽ đường thẳng (ảnh 2)

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có

CAD = AEC,  ACE chung suy ra ΔACD ~ ΔECA (g.g)

CACE = ADAEAC . AE = AD . CE

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F HEI = HCO

Vì tứ giác AOHC nội tiếp  HAO = HCO = HEI

Suy ra tứ giác AHIE nội tiếp IHE = IAE = BDEHI // BD

Mà H là trung điểm của DE  I là trung điểm của EF. Có EF // MN và IE = IF

 O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành  AM//BN.

Câu hỏi cùng chủ đề

Xem tất cả