Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của AB. Một đường thẳng thay đổi đi qua

Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của AB. Một đường thẳng thay đổi đi qua A cắt đường tròn tâm O bán kính OI tại P và Q.

a) Chứng minh rằng AP.AQ = AI2.

Trả lời
Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của AB. Một đường thẳng thay đổi đi qua (ảnh 1)

a) Ta có:

AIP^=PQI^ (góc tạo bởi tiếp tuyến và dây cung, góc nội tiếp cùng chắn cung IP)

AIP^=AQI^

Xét ∆AIP và ∆AQI có:

AIP^=AQI^ (cmt)

  A^: góc chung

Þ ∆AIP ∆AQI (g.g)

AIAQ=APAIAP.AQ=AI2(1) (đpcm)

Câu hỏi cùng chủ đề

Xem tất cả