Cho đường tròn (O; R) đường kính AB và tiếp tuyến Ax

Đề bài: Cho đường tròn (O; R) đường kính AB và tiếp tuyến AxTừ điểm C thuộc Ax kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao
điểm của CO và AD là I.

a) Chứng minh: CO  AD.

b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B)Chứng minh CE . CB = CI . CO.

c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi
điểm C di chuyển trên Ax.

 

Trả lời

Hướng dẫn giải:

Tài liệu VietJack

a) Vì C là giao điểm của 2 tiếp tuyến CA và CD

Nên CA = CD

Suy ra C thuộc đường trung trực của AD                 (1)

Vì A, D cùng thuộc (O) nên OA = OD

Suy ra O thuộc đường trung trực của AD                (2)

Từ (1) và (2) suy ra CO  AD

b) Xét tam giác vuông ACO có CO  AI

Suy ra CI . CO = AC2 (hệ thức lượng trong tam giác vuông)

Vì tam giác AEB nội tiếp (O), AB là đường kính

Nên tam giác AEB vuông tại E

Suy ra AE  BE

Xét tam giác vuông ACB có AE  BC

Suy ra CE . CB = AC2 (hệ thức lượng trong tam giác vuông)

Mà CI . CO = AC2 (chứng minh trên)

Suy ra  CE . CB = CI . CO

Vậy CE . CB = CI . CO

c) Vì H là trực tâm tam giác ACD nên AH  CD, AC  DH, CH  AD

Vì AC  DH, AC  AB nên DH // AB

Vì AH  CD, DO  CD nên AH // DO

Xét tứ giác AHDO có AH // DO, DH // AO (chứng minh trên)

Suy ra AHDO là hình bình hành

Mà AD cắt HO tại I

Do đó I là trung điểm của HO

Trên tia đối của tia AO lấy G sao cho GA = AO

Xét tam giác GHO có A là trung điểm của OG, I là trung điểm của HO

Nên AI là đường trung bình

Suy ra AI // GH

Mà AI  CO nên GH  CO

Suy ra OHG^=90°

Do đó H thuộc đường tròn đường kính OG

Vậy khi C di chuyển trên Ax thì H di chuyển trên đường tròn tâm A bán bính AO cố định.

Câu hỏi cùng chủ đề

Xem tất cả