Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A khác B và

Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.

a. Chứng minh: OD AB và từ đó suy ra D là trung điểm của AB.

b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).

c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.

Trả lời
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A khác B và (ảnh 1)

a. A (O) đường kính BC \( \Rightarrow \widehat {BAC} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

\( \Rightarrow AB \bot AC\)

Mà Ox // AC \( \Rightarrow Ox \bot AB\) hay OD \( \bot AB\)

Ta có: OA = OB

∆OAB cân tại O có đường cao OD

OD là đường trung tuyến

D là trung điểm AB

b. Xét ∆OAB cân tại O, \(OD \bot AB \Rightarrow OD\) là phân giác \(\widehat {AOB}\)

Xét ∆OAE và ∆OBE có: OE chung; \(\widehat {AOE} = \widehat {BOE}\)(OE phân giác \(\widehat {AOB}\)); OA = OB

\( \Rightarrow \Delta OAE = \Delta OBE\left( {c.g.c} \right) \Rightarrow \widehat {OAE} = \widehat {OBE} = 90^\circ \)(BE là tiếp tuyến tại A của (O).

c. Xét ∆BCF có: O là trung điểm BC; OE // FC (vì Ox // AC)

OE là đường trung bình ∆BCF E là trung điểm BF BE = EF

Ta có: AH BC; BF BC AH // BF

\(\frac{{AI}}{{EF}} = \frac{{CI}}{{CE}} = \frac{{IH}}{{BE}}\)(Định lí Talet)

Mà EF = BE AI = IH I là trung điểm AH (Gọi I = CE ∩ AH).

Câu hỏi cùng chủ đề

Xem tất cả