Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn

Đề bài: Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm ). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.

a) Chứng minh : tứ giác AOHC nội tiếp.

b) Chứng minh : AC . AE = AD . CE

c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh : AM // BN

Trả lời

Hướng dẫn giải:

Tài liệu VietJack

a) Ta có 

CAB = 900OHC = 900CAB +OHC = 1800

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có CAD = AEC,  ACE chung suy ra ΔACD ~ ΔECA (g.g)

CACE = ADAEAC . AE = AD . CE

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F

HEI = HCO

Vì tứ giác AOHC nội tiếp HAO = HCO = HEI

Suy ra tứ giác AHIE nội tiếp IHE = IAE = BDEHI // BD

Mà H là trung điểm của DE   I là trung điểm của EF. Có EF // MN và IE =  IF

 O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành   AM//BN.

Câu hỏi cùng chủ đề

Xem tất cả