Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho

Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.

a) Chứng minh ∆ABC vuông và tính độ dài AC.

b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).

c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).

d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.

Trả lời
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho (ảnh 1)

a) OA = OB = 4, OH = 1 \( \Rightarrow \) AH = 3, HB = 5

Ta có: AB là đường kính của (O) \( \Rightarrow \)\(\widehat {ACB} = 90^\circ \)

\( \Rightarrow \)ABC vuông tại C.

Mà CH\( \bot \)AB \( \Rightarrow \)CH2 = HA. HB = 15

\( \Rightarrow \)AC2 = CH2 + HA2 = 24 \( \Rightarrow \)\(AC = 2\sqrt 6 \).

b) Vì AB\( \bot \)CD \( \Rightarrow \)AB là trung trực của CD

\( \Rightarrow \)BC = BD \( \Rightarrow \)CBD cân tại B.

Lại có: \(\widehat {EAC} = \widehat {CBA} = \widehat {HBD}\)

\( \Rightarrow \)ECA DHB (g.g)

\( \Rightarrow \frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).

c) Vì I, O là trung điểm AE, AB

\( \Rightarrow \)IO // EB \( \Rightarrow \)IO\( \bot \)AC (BE\( \bot \)AC) \( \Rightarrow \)A, C đối xứng với nhau qua OI

\( \Rightarrow \)\(\widehat {ICO} = \widehat {IAO} = 90^\circ \)

\( \Rightarrow \)IC là tiếp tuyến của (O).

\( \Rightarrow \)\(\widehat {ICQ} = \widehat {CBI}\)

d) Gọi AF ∩ BI = {G}

Vì IC, IA là tiếp tuyến của (O) \( \Rightarrow \)IC = IA tương tự FC = FB

Mà AI // BF \( \Rightarrow \)\(\frac{{IG}}{{GB}} = \frac{{IA}}{{BF}} = \frac{{CI}}{{CF}}\)

\( \Rightarrow \)GC // BF \( \Rightarrow \)GC\( \bot \)AB \( \Rightarrow \)C, G, H thẳng hàng

\( \Rightarrow \)IB, HC, AF đồng quy.

Câu hỏi cùng chủ đề

Xem tất cả