Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un Tìm công thức của vn, un tính theo n

Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.

Tìm công thức của vn, un tính theo n.

Trả lời

Từ kết quả câu b, ta có: vn = v1 + (n – 1)d = 1 + (n – 1) . 2 = – 1 + 2n.

Lại có: v1 = u2 – u1

          v2 = u3 – u2

          ...

          vn – 2 = un – 1 – un – 2

          vn – 1 = un – un – 1

Cộng theo từng vế của n − 1 đẳng thức trên, ta có:

v1 + v2 + ... + vn – 2 + vn – 1 = – u1 + un  

          \( \Leftrightarrow \frac{{\left( {{v_1} + {v_{n - 1}}} \right)\left( {n - 1} \right)}}{2} = - 1 + {u_n}\)

          \( \Leftrightarrow \frac{{\left[ {1 + \left( { - 1 + 2\left( {n - 1} \right)} \right)} \right]\left( {n - 1} \right)}}{2} = - 1 + {u_n}\)

          (n – 1)2 = un – 1

          un = 1 + (n – 1)2.

Vậy un = 1 + (n – 1)2 và vn = – 1 + 2n với mọi n *.

Câu hỏi cùng chủ đề

Xem tất cả