Cho đa thức bậc ba P(x) thỏa mãn: P(x) chia cho x^2 + 2 dư 2x − 1, chia cho x^2 + x dư 16x − 11
Câu 39: Cho đa thức bậc ba P(x) thỏa mãn: P(x) chia cho x2 + 2 dư 2x − 1, chia cho x2 + x dư 16x − 11. Tính P(100).
Câu 39: Cho đa thức bậc ba P(x) thỏa mãn: P(x) chia cho x2 + 2 dư 2x − 1, chia cho x2 + x dư 16x − 11. Tính P(100).
Ta có: P(x) chia cho x2 + 2 dư 2x – 1
⇒ P(x) = Q(x).(x2 + 2) + 2x – 1 (với Q(x) là đa thức bậc nhất)
⇒ P(x) = (ax + b)(x2 + 2) + 2x – 1
Vì P(x) chia x2 + x dư 16x – 11
⇒ P(x) – 16x + 11 chia hết cho x2 + x.
Đặt R(x) = P(x) – 16x + 11
Khi đó R(x) = (ax + b)(x2 + 2) – 14x + 10 chia hết cho x2 + x
Vì thế hai nghiệm x = 0 và x = −1 của x2 + x cũng là nghiệm của R(x), tức là:
⇔
⇒ P(x) = (3x – 5)(x2 + 2) + 2x – 1
Vậy P(100) = 2905789