Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m

Đề bài: Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Trả lời

Hướng dẫn giải:

• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1

Û m ≠ ‒2.

• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û m12 .

Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.

Khi đó 0 = (2m + 1)xA – 2m – 3

Þ xA=2m+32m+1 . Suy ra A2m+32m+1;0 .

• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.

Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.

Khi đó 0 = (m – 1)xB + m

Þ xB=mm1 . Suy ra Bmm1;0 .

Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.

2m+32m+1=mm1

Þ (2m + 3).(m – 1) = (2m + 1).(‒m)

Û 2m2 + m – 3 = –2m2 – m

Û 4m2 + 2m – 3 = 0

Û m=1±134  (thỏa mãn).

Vậy m=1±134  thỏa mãn yêu cầu đề bài

Câu hỏi cùng chủ đề

Xem tất cả