Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G
Đề bài. Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.
Đề bài. Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.
Vì G là giao điểm của hai đường trung tuyến BN và CM của tam giác ABC nên G là trọng tâm tam giác ABC.
Do đó
Mà CM = BN (giả thiết) nên CG = BG.
Δ∆BGC có CG = BG nên Δ∆BGC cân tại G.
Suy ra (tính chất tam giác cân)
Xét Δ∆BMC và Δ∆CNB có:
MC = NB (theo giả thiết),
(do )
BC là cạnh chung.
Do đó Δ∆BMC = Δ∆CNB (c.g.c).
Suy ra (hai góc tương ứng).
Tam giác ABC có nên Δ∆ABC cân tại A.
Vậy nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.