Cho a^2 (b + c) = b^2 (c + a) = 2018 với a, b, c đôi một khác nhau và khác 0. Tìm giá trị của biểu thức c^2 (a + b

Câu 44: Cho a2(b + c) = b2(c + a) = 2018 với a, b, c đôi một khác nhau và khác 0. Tìm giá trị của biểu thức c2(a + b).

Trả lời

Ta có: a2(b + c) = b2(c + a)

⇔ a2b + a2c = b2c + b2a

⇔ a2b −  b2a + a2c − b2c = 0

⇔ ab(a − b) + c(a2 − b2) = 0

⇔ ab(a − b) + c(a − b)(a + b) = 0

⇔ (a − b)[ab + c(a + b)] = 0

⇔ (a − b)[ab + c(a + b)] = 0

⇔ (a − b)(ab + bc + ca) = 0

Do a ≠ b ⇒ ab + bc + ca = 0

Xét hiệu c2(a + b) − a2(b + c) = ac2 + bc2 − a2b − a2c

= ac(c − a) + b(c − a)(c + a)

= (c − a)(ac + bc + ab) = 0

Do đó: c2(a + b) = a2(b + c) = 2018

Câu hỏi cùng chủ đề

Xem tất cả