Cho a, b > 0 thỏa mãn a + b = 1. Chứng minh ( a + 1/b)^2 + ( b + 1/a)^2 lớn hơn hoặc bằng 25/2

Cho a, b > 0 thỏa mãn a + b = 1. Chứng minh \({\left( {a + \frac{1}{b}} \right)^2} + {\left( {b + \frac{1}{a}} \right)^2} \ge \frac{{25}}{2}\).

Trả lời

Lời giải

Áp dụng bất đẳng thức Cauchy cho hai số a > 0, b > 0, ta được: \({\left( {a + b} \right)^2} \ge 4ab\).

\( \Leftrightarrow \frac{{a + b}}{{ab}} \ge \frac{4}{{a + b}}\)

\( \Leftrightarrow \frac{1}{b} + \frac{1}{a} \ge \frac{4}{{a + b}} = \frac{4}{1} = 4\)

\( \Leftrightarrow a + b + \frac{1}{b} + \frac{1}{a} \ge a + b + 4 = 1 + 4 = 5\)

\( \Leftrightarrow {\left( {a + b + \frac{1}{b} + \frac{1}{a}} \right)^2} \ge 25\)

Dấu “=” xảy ra \( \Leftrightarrow a = b = \frac{1}{2}\).

Áp dụng bất đẳng thức Bunhiacopski, ta được:

\(\left[ {{{\left( {a + \frac{1}{b}} \right)}^2} + {{\left( {b + \frac{1}{a}} \right)}^2}} \right]\left( {{1^2} + {1^2}} \right) \ge {\left[ {\left( {a + \frac{1}{b}} \right).1 + \left( {b + \frac{1}{a}} \right).1} \right]^2}\)

\[ \Leftrightarrow \left[ {{{\left( {a + \frac{1}{b}} \right)}^2} + {{\left( {b + \frac{1}{a}} \right)}^2}} \right].2 \ge {\left( {a + \frac{1}{b} + b + \frac{1}{a}} \right)^2} \ge 25\]

\( \Leftrightarrow {\left( {a + \frac{1}{b}} \right)^2} + {\left( {b + \frac{1}{a}} \right)^2} \ge \frac{{25}}{2}\)

Dấu “=” xảy ra \(a = b = \frac{1}{2}\).

Vậy ta có điều phải chứng minh.

Câu hỏi cùng chủ đề

Xem tất cả