Cho A = 1 + 4 + 4^2 + 4^3 +...+ 4^11. Chứng tỏ rằng

Đề bài: Cho A = 1 + 4 + 4+ 4+...+ 411. Chứng tỏ rằng:

a) A chia hết cho 21;

b) A chia hết cho 105;

c) A chia hết cho 4097.

Trả lời

Hướng dẫn giải:

a) A=1 + 4 + 4+ 4+ ... +411

= (1 + 4 + 42) + (4+ 4+ 45) + (4+ 4+ 48) + (4+ 410 + 411)

= (1 + 4 + 42) + (43.1 + 43.4 + 43.42) + (46.1 + 46.4 + 46.42) + (49.1 + 49.4 + 49.42)

= (1 + 4 + 42).1 + 43.(1 + 4 + 42) + 46.(1 + 4 + 42) + 49.(1 + 4 + 42)

= 21.1 + 43.21 + 46.21 + 49.21

= 21.(1 + 4+ 4+ 49)

Suy ra A chia hết cho 21.

b) A = 1 + 4 + 4+ 4+ ... + 411

= (1 + 4 + 4+ 4+ 4+ 45) + (4+ 4+ 4+ 4+ 410 + 411)

= (1 + 4 + 4+ 4+ 4+ 45) + (46.1 + 46.4 + 46.4+ 46.4+ 46.4+ 46.45)

= (1 + 4 + 4+ 4+ 4+ 45).1 + 46.(1 + 4 + 4+ 4+ 4+ 45)

= 1365.1 + 46.1365

= 1365.1 + 46.1365

= 1365.(1 + 46)

Suy ra 1365 chia hết cho 105 nên A chia hết cho 105.

Câu hỏi cùng chủ đề

Xem tất cả