Cho 2 đường thẳng: ( d1): y = 1/2x + 2 và (d2): y = −x + 2. Gọi A, B lần lượt là giao điểm của (d1) và (d2) với trục Ox, C là giao điểm của (d1), (d2). Tính chu vi và diện tích của tam giác
38
19/05/2024
Cho 2 đường thẳng: \(\left( {{d_1}} \right):\;y = \frac{1}{2}x + 2\) và (d2): y = −x + 2.
Gọi A, B lần lượt là giao điểm của (d1) và (d2) với trục Ox, C là giao điểm của (d1), (d2). Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm).
Trả lời
Lời giải
• Vì A là giao điểm của (d1) với trục Ox nên \(\frac{1}{2}x + 2 = 0 \Leftrightarrow x = - 4\)
Þ A(−4; 0).
• Vì B là giao điểm của (d2) với trục Ox nên −x + 2 = 0 Û x = 2
Þ B(2; 0).
• Vì C là giao điểm của (d1), (d2) nên \(\frac{1}{2}x + 2 = - x + 2 \Leftrightarrow x = 0\) Þ y = 2
Þ C(0; 2)
Ta có:
\(AC = \sqrt {{{\left( { - 4} \right)}^2} + {2^2}} = 2\sqrt 5 \) (đvđd);
\(BC = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \) (đvđd);
AB = 6 (đvđd); OC = 2 (đvđd).
Chu vi của tam giác ABC là:
\({P_{ABC}} = AB + BC + AC = 6 + 2\sqrt 2 + 2\sqrt 5 \) (đvđd)
Diện tích tam giác ABC là:
\({S_{ABC}} = \frac{1}{2}OC.AB = \frac{1}{2}.2.6 = 6\) (đvdt).