Biết rằng parabol (P): y = ax^2 + bx + c (a ≠ 0) đi qua hai điểm A(0; –3), B(2; 1

Đề bài: Biết rằng parabol (P): y = ax2 + bx + c (a ≠ 0) đi qua hai điểm A(0; –3), B(2; 1) và cắt trục hoành tại hai điểm phân biệt M, N thỏa mãn MN = 2. Tính giá trị biểu thức a2 – b2.

Trả lời

Hướng dẫn giải:

A, B ∈ (P) nên tọa độ A, B là nghiệm của phương trình:

{3=a.02+b.0+c1=a.22+b.2+c{c=34a+2b=4{c=3b=22a

Vì (P) giao Ox tại M và N nên gọi tọa độ của M(x­­­M; 0) , N(xN; 0)

MN = 2 xNxM2+yNyM2=2

⇔ xN – xM = 2 (*)

xN=b+Δ2a;  xM=bΔ2a

xNxM=Δa=b24aca=2

⇔ b2 – 4ac = 4a2

⇔ b2 – 4a.(–3) = 4a2

⇔ (2 – 2a)2 + 12a – 4a2 = 0

⇔ 4a2 – 8a + 4 + 12a – 4a2 = 0

⇔ 4a + 4 = 0

Do đó, nếu a = –1 thì b = 4

Vậy a2 – b2 = (–1)2 – 42 = –15

Câu hỏi cùng chủ đề

Xem tất cả