(Phương trình đoạn chắn của đường thẳng). Chứng minh rằng, đường thẳng đi qua hai điểm A(a; 0), B(0; b) với ab ≠ 0 (H.7.3)

Bài 7.5 trang 34 Toán 10 Tập 2: (Phương trình đoạn chắn của đường thẳng) 

Chứng minh rằng, đường thẳng đi qua hai điểm A(a; 0), B(0; b) với ab ≠ 0 (H.7.3) có phương trình là xa+yb=1

Bài 7.5 trang 34 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

Trả lời

Ta có: AB=0a;b0=a;b

Suy ra đường thẳng AB có một vectơ chỉ phương là AB=a;b nên nó có một vectơ pháp tuyến là n=b;a

Do đó phương trình tổng quát của đường thẳng AB đi qua điểm A và nhận n làm vectơ pháp tuyến là: b(x – a) + a(y – 0) = 0 hay bx + ay – ab = 0   (1). 

Do ab ≠ 0 nên ta chia cả hai vế của (1) cho ab, ta được: 

bxab+ayababab=0ab

xa+yb1=0

xa+yb=1

Vậy đường thẳng đi qua hai điểm A(a; 0), B(0; b) với ab ≠ 0 có phương trình là xa+yb=1.

Câu hỏi cùng chủ đề

Xem tất cả