A = x2 + 4y2 – 4x + 32y + 2078

Đề bài: Tìm giá trị nhỏ nhất:

a) A = x2 + 4y2 – 4x + 32y + 2078;

b) B = 3x2 + y2 + 4x – y .

Trả lời

Hướng dẫn giải:

a) Ta có A = x2 + 4y2 – 4x + 32y + 2078

= (x2 – 4x +2) + (4y2 + 32y + 64) + 2010

= (x – 2)2 + (2y + 8)2 + 2010

Vì  (x – 2)2 ≥ 0; (2y + 8)2  ≥ 0 nên A = (x – 2)2 + (2y + 8)2 + 2010 ≥ 2010.

Dấu = xảy ra khi x – 2 = 0 và 2y + 8 = 0.

Vây Amin = 2010 ⇔ (x; y) = (2; – 4).

b) Ta có: B = 3x2 + y2 + 4x – y

=3x2+43x+49+y2y+141912=3x+232+y1221912B=3x+232+y12219121912

Dấu = xảy ra khi x+23=0 y12=0 .

Vậy  Bmin=1912x=23y=12.

Câu hỏi cùng chủ đề

Xem tất cả